sppControlSystem/sppControlSystem.ino

448 lines
No EOL
13 KiB
C++

/*
This file is part of the AberSailbot minimum viable control system (AMVCS).
AMVCS is free software: you can
redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, version 2.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51
Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Copyright Colin Sauze
*/
#include <stdio.h>
#include <Servo.h>
#include <Wire.h>
#include <SoftwareSerial.h>
#include <math.h>
#include "Time.h"
#include "TinyGPS.h"
#define HMC6343_ADDRESS 0x19
#define HMC6343_HEADING_REG 0x50
#define GPS_ENABLE_PIN 12
#define GPS_READ_INTERVAL 15 //how many seconds to leave between GPS reads
#define WP_THRESHOLD 15 //how close (in metres) should we get before we change waypoint?
#define rad2deg(x) (180 / M_PI) * x
#define deg2rad(x) x *M_PI / 180
Servo rudderServo; // create servo object to control a servo
SoftwareSerial myDebug(7, 8);
TinyGPS gps;
#define HEADING 0
#define WIND_DIR 1
#define ROLL 2
#define PITCH 3
#define RUDDER 4
#define SAIL 5
#define LAT 6
#define LON 7
#define TIME 8
#define DEBUG_CRITICAL 1 //really important messages that we don't want to ignore and are prepared to sacrifice execution speed to see
#define DEBUG_IMPORTANT 2 //fairly important messages that we probably want to see, but might cause issues with execution speed
#define DEBUG_MINOR 3 //less important messages that we can safely turn off to improve execution speed
#define DEBUG_THRESHOLD DEBUG_IMPORTANT //set to 0 to show no debugging messages
byte ledState = 0;
struct Data {
uint16_t heading;
uint16_t wind_dir;
int8_t roll;
int8_t pitch;
int8_t rudder;
byte sail;
float lat;
float lon;
long unixtime;
} state;
//make printf work
static FILE uartout = {
0
};
static int uart_putchar(char c, FILE *stream) {
myDebug.write(c);
return 0;
}
static void say(byte level, char *msg) {
if (level <= DEBUG_THRESHOLD) {
myDebug.print("Debug");
myDebug.print(level);
myDebug.print(": [Ctrl] ");
myDebug.println(msg);
}
}
//debugging printf that prepends "Debug:" to everything and can be easily turned off
void dprintf(byte level, const char *fmt, ...) {
if (level <= DEBUG_THRESHOLD) {
printf("Debug%d: [Ctrl] ", level);
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
}
}
void dprintf2(const char *fmt, ...) {
//printf("Debug%d: [Ctrl] ",level);
va_list ap;
va_start(ap, fmt);
printf(fmt, ap);
va_end(ap);
}
void setup() {
//Serial.begin(9600); //baud rate makes no difference on 32u4
//for GPS, we communicate with the GPS through the Serial Port
//so, using Serial.println() will actually send messages to the GPS
Serial.begin(4800);
myDebug.begin(4800); //debug UART
say(DEBUG_CRITICAL, "Control system start up");
//required for printf
fdev_setup_stream(&uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE);
stdout = &uartout;
dprintf(DEBUG_IMPORTANT, "Printf configured \r\n");
delay(5000);
say(DEBUG_IMPORTANT, "Setting up servos...");
//Use .attach for setting up connection to the servo
rudderServo.attach(5, 1060, 1920); // Attach, with the output limited
// between 1000 and 2000 ms
rudderServo.writeMicroseconds(1500);
say(DEBUG_IMPORTANT, "Done");
say(DEBUG_IMPORTANT, "Setting up I2C...");
Wire.begin(); // Initialise i2c for compass
say(DEBUG_IMPORTANT, "Done");
say(DEBUG_IMPORTANT, "Setting up GPS...");
pinMode(GPS_ENABLE_PIN, OUTPUT); //GPS on/off line
//setup GPS
digitalWrite(GPS_ENABLE_PIN, 1);
delay(1000);
//turn off VTG
Serial.println("$PSRF103,05,00,00,01*21\r");
//turn off RMC
Serial.println("$PSRF103,04,00,00,01*20\r");
//turn off GSV
Serial.println("$PSRF103,03,00,00,01*27\r");
//turn off GSA
Serial.println("$PSRF103,02,00,00,01*26\r");
//turn off GLL
Serial.println("$PSRF103,01,00,00,01*25\r");
//turn off GGA
Serial.println("$PSRF103,00,00,00,01*24\r");
delay(1000);
//leave GPS on to get its initial fix
//digitalWrite(GPS_ENABLE_PIN,0);
say(DEBUG_IMPORTANT, "Done");
say(DEBUG_IMPORTANT, "Setup Complete\n");
}
//computes an NMEA checksum
byte compute_checksum(byte *data, byte length) {
byte computed_checksum = 0;
for (byte i = 0; i < length; i++) {
computed_checksum = (byte)computed_checksum ^ data[i];
}
return computed_checksum;
}
//reads heading from HMC6343 compass
int readCompass() {
byte buf[6];
Wire.beginTransmission(HMC6343_ADDRESS); // Start communicating with the HMC6343 compasss
Wire.write(HMC6343_HEADING_REG); // Send the address of the register that we want to read
//Wire.write(0x55); // Send the address of the register that we want to read
Wire.endTransmission();
Wire.requestFrom(HMC6343_ADDRESS, 6); // Request six bytes of data from the HMC6343 compasss
for (int i = 0; i < 6; i++) {
while (Wire.available() < 1)
; // Busy wait while there is no byte to receive
buf[i] = Wire.read();
//printf("buf[%d]=%d\r\n",i,buf[i]);
}
int heading = ((buf[0] << 8) + buf[1]); // the heading in degrees
int pitch = ((buf[2] << 8) + buf[3]); // the pitch in degrees
int roll = ((buf[4] << 8) + buf[5]); // the roll in degrees*/
heading = heading / 10;
roll = roll / 10;
pitch = pitch / 10;
//myDebug.print("Heading = ");
//myDebug.print(heading);
state.roll = (int8_t)roll;
state.pitch = (int8_t)pitch;
state.heading = (uint16_t)heading;
//dprintf(DEBUG_IMPORTANT,"Heading: %d Roll: %d Pitch: %d\r\n",state.heading,state.roll,state.pitch);
//printf("heading=%d\r\n",heading);
//dprintf2("heading=%d\r\n",heading);
delay(100);
return (int)heading; // Print the sensor readings to the serial port.
}
void readGPS() {
unsigned long fix_age = 9999, time, date;
say(DEBUG_MINOR, "About to read GPS");
digitalWrite(GPS_ENABLE_PIN, 1); //turn the GPS on
delay(1000);
while (fix_age == TinyGPS::GPS_INVALID_AGE || fix_age > 3000) //make sure the GPS has a fix, this might cause a wait the first time, but it should be quick any subsequent time
{
Serial.println("$PSRF103,04,01,00,01*21\r");
dprintf(DEBUG_MINOR, "NMEA string: ");
unsigned long start = millis();
while (millis() < start + 2000) {
if (Serial.available()) {
int c = Serial.read();
gps.encode(c);
if (DEBUG_THRESHOLD >= DEBUG_MINOR) {
myDebug.write(c);
}
if (c == '\n') {
break;
}
}
}
gps.get_datetime(&date, &time, &fix_age);
dprintf(DEBUG_MINOR, "fix age = %ld\r\n", fix_age);
if (fix_age == TinyGPS::GPS_INVALID_AGE) {
dprintf(DEBUG_IMPORTANT, "Invalid fix, fix_age=%ld\r\n", fix_age);
say(DEBUG_IMPORTANT, "No GPS fix");
}
}
digitalWrite(GPS_ENABLE_PIN, 0); //turn the GPS off
gps.get_datetime(&date, &time, &fix_age);
gps.f_get_position(&state.lat, &state.lon, &fix_age);
if (fix_age == TinyGPS::GPS_INVALID_AGE) {
say(DEBUG_IMPORTANT, "Invalid fix");
}
else {
say(DEBUG_IMPORTANT, "Fix Valid");
dprintf(DEBUG_IMPORTANT, "lat=%ld lon=%ld\r\n", (long)(state.lat * 1000), (long)(state.lon * 1000));
int year;
byte month, day, hour, min, sec;
unsigned long age;
gps.crack_datetime(&year, &month, &day, &hour, &min, &sec, NULL, &age);
setTime(hour, min, sec, day, month, year); //sets the time in the time library, lets us get unix time
}
}
int mod(int value) { //keeps angles betweeen 0 and 360
int newValue;
if (value < 0) {
newValue = value + 360;
} else if (value >= 360) {
newValue = value - 360;
} else {
newValue = value;
}
return newValue;
}
//calculates difference between two headings taking wrap around into account
int get_hdg_diff(int heading1, int heading2) {
int result;
result = heading1 - heading2;
if (result < -180) {
result = 360 + result;
return result;
}
if (result > 180) {
result = 0 - (360 - result);
}
return result;
}
void loop() {
unsigned long last_gps_read = 0;
unsigned long last_time = 0, time_now = 0;
int wp_hdg = 0; // heading to the next waypoint, in degrees
float wp_dist = 0.0; // distance to next waypoint
int wp_num = 0; // number of waypoints
float igain = 0.01; // i and p gain are multipliers for the rudder servo, they fix issues
float pgain = 0.1;
float running_err = 0.0;
int hdg_err = 0;
int relwind; // wind direction relative to us
long last_telemetry = 0;
#define TELEMETRY_INTERVAL 10
#define TARGET_LOOP_INTERVAL 100 //number of milliseconds between loop intervals
#define NUM_OF_WAYPOINTS 1
float wp_lats[NUM_OF_WAYPOINTS];
float wp_lons[NUM_OF_WAYPOINTS];
wp_lats[0] = 52.4;
wp_lons[0] = -4.4;
while (1) {
//make loop execute at constant speed
time_now = millis();
if (time_now - last_time > 0 && time_now - last_time < TARGET_LOOP_INTERVAL) {
delay(TARGET_LOOP_INTERVAL - (time_now - last_time));
}
last_time = millis();
//get external values
/*
* Grab compass value, work out the wind direction in relation to our heading, then grab out gps location and print some debug
* When we read the gps value we also check how close we are to our target waypoint, if we're close enough we move on to the next one.
* after doing this we do some stuff to make sure we arnt going to waypoints that dont exist then set our waypoint heading (wp_heading)
* and some other data that will be used to steer towards the waypoint
*/
readCompass();
//state.wind_dir=getTrueWind();
//no wind sensor, so just use a fixed wind direction
state.wind_dir = 270;
relwind = mod(state.wind_dir - state.heading);
if (millis() - last_gps_read > (GPS_READ_INTERVAL * 1000) || millis() < last_gps_read) //read the GPS at the specified interval or whenever the millis count wraps around
{
say(DEBUG_MINOR, "Reading GPS");
readGPS();
wp_hdg = (int)TinyGPS::course_to(state.lat, state.lon, wp_lats[wp_num], wp_lons[wp_num]);
wp_dist = TinyGPS::distance_between(state.lat, state.lon, wp_lats[wp_num], wp_lons[wp_num]);
if (wp_dist < WP_THRESHOLD) {
wp_num++;
if (wp_num == NUM_OF_WAYPOINTS) //reached last waypoint already
{
wp_num--;
} else //reached new waypoint
{
wp_hdg = (int)TinyGPS::course_to(state.lat, state.lon, wp_lats[wp_num], wp_lons[wp_num]);
wp_dist = TinyGPS::distance_between(state.lat, state.lon, wp_lats[wp_num], wp_lons[wp_num]);
}
}
last_gps_read = millis();
}
//sail logic
//sailLogic(relwind);
//no sail as we have a fixed one
//rudder logic
/*
* First we use get_hdg_diff to get work out how many degrees off the correct direction we are, this is hdg_err (heading error)
* next we increase the running error and clamp it, this variaby slowly increases over time so that we can reach the heading (withough this we just get closer and closer but never reach it)
* then we use the heading and the error to set what position the rudder should be in, clamp it then also store that value in state for reference later (state holds all the data the arduino needs, see its definition at like 60~)
*/
hdg_err = get_hdg_diff(wp_hdg, state.heading);
running_err = running_err + (float)hdg_err;
if (abs(running_err > 4000)) {
running_err = 4000; // limit integral component
}
running_err = running_err * 0.9;
/*dprintf("hdg_err = %d running_err = ",hdg_err);
myDebug.println(running_err);*/
state.rudder = (int)round((pgain * (float)hdg_err) + (igain * running_err));
if (state.rudder < -5) {
state.rudder = -5;
} else if (state.rudder > 5) {
state.rudder = 5;
}
rudderServo.writeMicroseconds(1500 + (state.rudder * 100));
// print debug info
/*
* We print debug info every certain amount of seconds (10 by default).
* we mostly print info about where we are and where the waypoint is
*/
if (last_telemetry + (TELEMETRY_INTERVAL * 1000) < millis()) {
dprintf(DEBUG_CRITICAL, "time=%ld hdg=%d hdg_err=%d roll=%d pitch=%d truewind=%d relwind=%d sail=%d rudder=%d wp_num=%d wp_hdg=%d wp_dist=%ld ", now(), state.heading, hdg_err, state.roll, state.pitch, state.wind_dir, relwind, state.sail, state.rudder, wp_num, wp_hdg, (long)wp_dist);
//time=181734082 hdg=-14836 hdg_err=9217 roll=-22526 pitch=24182 truewind=-25261 relwind=27648 sail=-6656 rudder=-7937 wp_hdg=2768 wp_dist=-284423467 lat=52.41648 lon=-4.06522 wplat=52.40000 wplon=-4.40000 running_err=966.57
// time=1398700112 hdg=158 hdg_err=107 roll=-26 pitch=-32 truewind=302 relwind=144 sail=4 rudder=5 Debug1: [Ctrl] wp_hdg=265 wp_dist=22842 lat=52.41666 lon=-4.06445 wplat=52.40000 wplon=-4.40000 running_err=963.96
if (DEBUG_THRESHOLD >= DEBUG_CRITICAL) {
myDebug.print("lat=");
myDebug.print(state.lat, 5);
myDebug.print(" lon=");
myDebug.print(state.lon, 5);
myDebug.print(" wplat=");
myDebug.print(wp_lats[wp_num], 5);
myDebug.print(" wplon=");
myDebug.print(wp_lons[wp_num], 5);
myDebug.print(" running_err=");
myDebug.println(running_err);
}
//transmit_data();
last_telemetry = millis();
}
}
}